

Thinking Recursively
Part III

Outline for Today
● Iteration + Recursion

● Combining two techniques together.
● Enumerating Permutations

● What order should we do things?
● Enumeration, Generally

● How to think about enumeration problems.

Recap from Last Time

List all subsets of
{1, 2, 3}

{ }

{1, 2, 3}

{ }

{1, 2}

{ }

{1, 3}

{ }

{1}

{ }

{2, 3}

{ }

{2}

{ }

{3}

{ }

{ }

{ 3 }

{1, 2}

{ 3 }

{1}

{ 3 }

{2}

{ 3 }

{ }

{ 2, 3 }

{1}

{ 2, 3 }

{ }

{1, 2, 3}

{ }

 ✓ 1

 ✓ 2

 ✓ 3

 × 1

 × 2 × 2 ✓ 2

 × 3 ✓ 3 × 3 ✓ 3 × 3 ✓ 3 × 3

New Stuff!

More On Self-Similarity

This self-similar
shape is called a

Sierpinski
carpet.

An order-0
Sierpinski carpet
is a filled square.

(0, 1) (0, 2)(0, 0)

(1, 2)(1, 0)

(2, 1) (2, 2)(2, 0)

(1, 0)

We can visit each
spot with a double

for loop.

Iteration + Recursion
● It’s completely reasonable to mix iteration

and recursion in the same function.
● Here, we’re firing off eight recursive calls,

and the easiest way to do that is with a
double for loop.

● Recursion doesn’t mean “the absence of
iteration.” It just means “solving a
problem by solving smaller copies of that
same problem.”

How many
purple squares
make up this

picture?

Time-Out for Announcements!

Assignment 3
● Assignment 2 was due today at 1PM.

● You can use late days to extend the deadline by 24 or 48
hours. Remember that you only get four late days to use
over the quarter.

● Assignment 3 (A Visit to Recursia) goes out today.
It’s due next Friday at 1:00PM.
● Play around with recursion and recursive problem-solving!
● Use recursion to generate mountain ranges!
● Generate all words in a fictional language!
● Make a neat building with recursion!

● YEAH hours are today, 4:30PM – 5:30PM, in Hewlett
101. Purely optional, but highly recommended.

Recursive Drawing Contest
● Our (optional, just for fun) Recursive

Drawing contest ends on Monday at 1PM.
● If you’re interested in participating, visit

http://recursivedrawing.com/, draw
something, and post it to EdStem.

● We’re very impressed with the submissions
you’ve made so far! If you haven’t yet done
so, go check them out. 😃

http://recursivedrawing.com/

(The Curtain Rises on Act II)

Enumerating Permutations

A permutation is a rearrangement
of the elements of a sequence.

List all subsets of
{1, 2, 3}

{ }

{1, 2, 3}

{ }

{1, 2}

{ }

{1, 3}

{ }

{1}

{ }

{2, 3}

{ }

{2}

{ }

{3}

{ }

{ }

{ 3 }

{1, 2}

{ 3 }

{1}

{ 3 }

{2}

{ 3 }

{ }

{ 2, 3 }

{1}

{ 2, 3 }

{ }

{1, 2, 3}

{ }

 ✓ 1

 ✓ 2

 ✓ 3

 × 1

 × 2 × 2 ✓ 2

 × 3 ✓ 3 × 3 ✓ 3 × 3 ✓ 3 × 3

Each decision is of
the form “do I

include this item?”

List all permutations of
{A, H, I}

Each decision is of
the form “which item

do I pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

A Question of Parameters

 listPermutationsOf("AHI", "");

I certainly must tell you
which string I’d like

to form permutations of!

 listPermutationsOf("AHI", "");

Pass in an empty string every
time I call this function?

Most Unorthodox!

 listPermutationsOf("AHI");

This is more acceptable
in polite company!

Wrapper Functions
● Some recursive functions

need extra arguments as
part of an implementation
detail.
● In our case, the string of

letters ordered so far is not
something we want to
expose.

● A wrapper function is a
function that does some
initial prep work, then
fires off a recursive call
with the right arguments.

Caller

Recursive Function

Wrapper Function

Storing Permutations

Set<string> permutationsOf(const string& str);

ResultType exploreRec(decisions remaining,
 decisions already made) {
 if (no decisions remain) {
 return decisions made;
 } else {
 ResultType result;
 for (each possible next choice) {
 result += exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 return result;
 }
}

ResultType exploreAllTheThings(initial state) {
 return exploreRec(initial state, no decisions made);
}

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Summary for Today
● Recursion and iteration aren’t mutually

exclusive and are frequently combined.
● We can enumerate subsets using a decision

tree of “do I pick this?” We can enumerate
permutations using a decision tree of “what
do I pick next?”

● Recursive functions can both print all
objects of some type and return all objects
of some type.

Your Action Items
● Read Chapter 8

● There are so many goodies there, and it’s a
great way to complement what we’re
discussing here.

● Work on Assignment 3
● Aim to complete the Flag of Recursia and

Mountains of Recursia by Monday, and aim
to start working on Speaking Recursian.

Next Time
● Enumerating Combinations

● Can you build the Dream Team?
● Recursive Backtracking

● Finding a needle in a haystack.
● The Great Shrinkable Word Problem

● A fun language exercise with a cute
backstory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

