
  

Thinking Recursively
Part III



  

Outline for Today
● Iteration + Recursion

● Combining two techniques together.
● Enumerating Permutations

● What order should we do things?
● Enumeration, Generally

● How to think about enumeration problems.



  

Recap from Last Time



List all subsets of
{1, 2, 3}

{ }

{1, 2, 3}

{ }

{1, 2}

{ }

{1, 3}

{ }

{1}

{ }

{2, 3}

{ }

{2}

{ }

{3}

{ }

{ }

{ 3 }

{1, 2}

{ 3 }

{1}

{ 3 }

{2}

{ 3 }

{ }

{ 2, 3 }

{1}

{ 2, 3 }

{ }

{1, 2, 3}

{ }

 ✓ 1             

 ✓ 2          

 ✓ 3         

             × 1

        × 2        × 2  ✓ 2          

        × 3  ✓ 3                 × 3  ✓ 3                 × 3  ✓ 3                 × 3



New Stuff!



More On Self-Similarity



This self-similar 
shape is called a 

Sierpinski 
carpet.



An order-0 
Sierpinski carpet 
is a filled square.



(0, 1) (0, 2)(0, 0)

(1, 2)(1, 0)

(2, 1) (2, 2)(2, 0)

(1, 0)

We can visit each 
spot with a double 

for loop.



Iteration + Recursion
● It’s completely reasonable to mix iteration 

and recursion in the same function.
● Here, we’re firing off eight recursive calls, 

and the easiest way to do that is with a 
double for loop.

● Recursion doesn’t mean “the absence of 
iteration.” It just means “solving a 
problem by solving smaller copies of that 
same problem.”



How many 
purple squares 
make up this 

picture?



Time-Out for Announcements!



Assignment 3
● Assignment 2 was due today at 1PM.

● You can use late days to extend the deadline by 24 or 48 
hours. Remember that you only get four late days to use 
over the quarter.

● Assignment 3 (A Visit to Recursia) goes out today. 
It’s due next Friday at 1:00PM.
● Play around with recursion and recursive problem-solving!
● Use recursion to generate mountain ranges!
● Generate all words in a fictional language!
● Make a neat building with recursion!

● YEAH hours are today, 4:30PM – 5:30PM, in Hewlett 
101. Purely optional, but highly recommended.



Recursive Drawing Contest
● Our (optional, just for fun) Recursive 

Drawing contest ends on Monday at 1PM.
● If you’re interested in participating, visit 

http://recursivedrawing.com/, draw 
something, and post it to EdStem.

● We’re very impressed with the submissions 
you’ve made so far! If you haven’t yet done 
so, go check them out. 😃

http://recursivedrawing.com/


(The Curtain Rises on Act II)



Enumerating Permutations



A permutation is a rearrangement
of the elements of a sequence.



List all subsets of
{1, 2, 3}

{ }

{1, 2, 3}

{ }

{1, 2}

{ }

{1, 3}

{ }

{1}

{ }

{2, 3}

{ }

{2}

{ }

{3}

{ }

{ }

{ 3 }

{1, 2}

{ 3 }

{1}

{ 3 }

{2}

{ 3 }

{ }

{ 2, 3 }

{1}

{ 2, 3 }

{ }

{1, 2, 3}

{ }

 ✓ 1             

 ✓ 2          

 ✓ 3         

             × 1

        × 2        × 2  ✓ 2          

        × 3  ✓ 3                 × 3  ✓ 3                 × 3  ✓ 3                 × 3

Each decision is of 
the form “do I 

include this item?”



List all permutations of
{A, H, I}

Each decision is of 
the form “which item 

do I pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I  I  

I  

H  H  

H  

A  A  

A        I     I A    H    

A

    H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""



A Question of Parameters



  

 listPermutationsOf("AHI", "");

I certainly must tell you
which string I’d like

to form permutations of!



  

 listPermutationsOf("AHI", "");

Pass in an empty string every
time I call this function?

Most Unorthodox!



  

 listPermutationsOf("AHI");

This is more acceptable
in polite company!



Wrapper Functions
● Some recursive functions 

need extra arguments as 
part of an implementation 
detail.
● In our case, the string of 

letters ordered so far is not 
something we want to 
expose.

● A wrapper function is a 
function that does some 
initial prep work, then 
fires off a recursive call 
with the right arguments.

Caller

Recursive Function

Wrapper Function



Storing Permutations



Set<string> permutationsOf(const string& str);



ResultType exploreRec(decisions remaining,
                      decisions already made) {
  if (no decisions remain) {
    return decisions made;
  } else {
    ResultType result;
    for (each possible next choice) {
      result += exploreRec(all remaining decisions,
                           decisions made + that choice);
    }                 
    return result;
  }
}

ResultType exploreAllTheThings(initial state) {
  return exploreRec(initial state, no decisions made);
}

Base Case: No 
decisions remain.

Recursive Case: 
Try all options for 
the next decision.



Summary for Today
● Recursion and iteration aren’t mutually 

exclusive and are frequently combined.
● We can enumerate subsets using a decision 

tree of “do I pick this?” We can enumerate 
permutations using a decision tree of “what 
do I pick next?”

● Recursive functions can both print all 
objects of some type and return all objects 
of some type.



Your Action Items
● Read Chapter 8

● There are so many goodies there, and it’s a 
great way to complement what we’re 
discussing here.

● Work on Assignment 3
● Aim to complete the Flag of Recursia and 

Mountains of Recursia by Monday, and aim 
to start working on Speaking Recursian.



Next Time
● Enumerating Combinations

● Can you build the Dream Team?
● Recursive Backtracking

● Finding a needle in a haystack.
● The Great Shrinkable Word Problem

● A fun language exercise with a cute 
backstory.
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